home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
IRIX 6.2 Development Libraries
/
SGI IRIX 6.2 Development Libraries.iso
/
dist
/
complib.idb
/
usr
/
share
/
catman
/
p_man
/
cat3
/
complib
/
cheev.z
/
cheev
Wrap
Text File
|
1996-03-14
|
3KB
|
133 lines
CCCCHHHHEEEEEEEEVVVV((((3333FFFF)))) CCCCHHHHEEEEEEEEVVVV((((3333FFFF))))
NNNNAAAAMMMMEEEE
CHEEV - compute all eigenvalues and, optionally, eigenvectors of a
complex Hermitian matrix A
SSSSYYYYNNNNOOOOPPPPSSSSIIIISSSS
SUBROUTINE CHEEV( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, RWORK, INFO )
CHARACTER JOBZ, UPLO
INTEGER INFO, LDA, LWORK, N
REAL RWORK( * ), W( * )
COMPLEX A( LDA, * ), WORK( * )
PPPPUUUURRRRPPPPOOOOSSSSEEEE
CHEEV computes all eigenvalues and, optionally, eigenvectors of a complex
Hermitian matrix A.
AAAARRRRGGGGUUUUMMMMEEEENNNNTTTTSSSS
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) COMPLEX array, dimension (LDA, N)
On entry, the Hermitian matrix A. If UPLO = 'U', the leading N-
by-N upper triangular part of A contains the upper triangular
part of the matrix A. If UPLO = 'L', the leading N-by-N lower
triangular part of A contains the lower triangular part of the
matrix A. On exit, if JOBZ = 'V', then if INFO = 0, A contains
the orthonormal eigenvectors of the matrix A. If JOBZ = 'N',
then on exit the lower triangle (if UPLO='L') or the upper
triangle (if UPLO='U') of A, including the diagonal, is
destroyed.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
W (output) REAL array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
WORK (workspace/output) COMPLEX array, dimension (LWORK)
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
PPPPaaaaggggeeee 1111
CCCCHHHHEEEEEEEEVVVV((((3333FFFF)))) CCCCHHHHEEEEEEEEVVVV((((3333FFFF))))
LWORK (input) INTEGER
The length of the array WORK. LWORK >= max(1,2*N-1). For
optimal efficiency, LWORK >= (NB+1)*N, where NB is the blocksize
for CHETRD returned by ILAENV.
RWORK (workspace) REAL array, dimension (max(1, 3*N-2))
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the algorithm failed to converge; i off-
diagonal elements of an intermediate tridiagonal form did not
converge to zero.
PPPPaaaaggggeeee 2222